
Citation: de Pinho, P.H.U.; Couras,

M.d.F.K.B.; Favier, G.; de Almeida,

A.L.F.; da Costa, J.P.J. Semi-Blind

Receivers for Two-Hop MIMO Relay

Systems with a Combined

TSTF-MSMKron Coding. Sensors

2023, 23, 5963. https://doi.org/

10.3390/s23135963

Academic Editor: Davy P. Gaillot

Received: 7 April 2023

Revised: 14 June 2023

Accepted: 14 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Semi-Blind Receivers for Two-Hop MIMO Relay Systems with
a Combined TSTF-MSMKron Coding
Pablo H. U. de Pinho 1,† , Maria de F. K. B. Couras 1,2,† , Gérard Favier 2,*,† , André L. F. de Almeida 3

and João Paulo J. da Costa 1,4

1 University of Brasilia, Federal District, Brasilia 70910-900, Brazil; pablohenriqueifpb@gmail.com (P.H.U.d.P.);
kallynna.mary@gmail.com (M.d.F.K.B.C.); joaopaulo.dacosta@hshl.de (J.P.J.d.C.)

2 I3S Laboratory, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
3 Federal University of Ceara, Fortaleza 60020-181, Ceara, Brazil; andre@gtel.ufc.br
4 Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany
* Correspondence: favier@i3s.unice.fr
† These authors contributed equally to this work.

Abstract: Due to the increase in the number of mobile stations in recent years, cooperative relaying
systems have emerged as a promising technique for improving the quality of fifth-generation (5G)
wireless networks with an extension of the coverage area. In this paper, we propose a two-hop
orthogonal frequency division multiplexing and code-division multiple-access (OFDM-CDMA)
multiple-input multiple-output (MIMO) relay system, which combines, both at the source and relay
nodes, a tensor space–time–frequency (TSTF) coding with a multiple symbol matrices Kronecker
product (MSMKron), called TSTF-MSMKron coding, aiming to increase the diversity gain. It is first
established that the signals received at the relay and the destination satisfy generalized Tucker models
whose core tensors are the coding tensors. Assuming the coding tensors are known at both nodes,
tensor models are exploited to derive two semi-blind receivers, composed of two steps, to jointly
estimate symbol matrices and individual channels. Necessary conditions for parameter identifiability
with each receiver are established. Extensive Monte Carlo simulation results are provided to show the
impact of design parameters on the symbol error rate (SER) performance, using the zero-forcing (ZF)
receiver. Next, Monte Carlo simulations illustrate the effectiveness of the proposed TSTF-MSMKron
coding and semi-blind receivers, highlighting the benefit of exploiting the new coding to increase the
diversity gain.

Keywords: generalized Tucker decomposition; MIMO relaying; multiple Kronecker product;
semi-blind receivers; TSTF-MSMKron coding

1. Introduction

In recent years, wireless communication systems have experienced great growth in
the number of users and new applications such as autonomous vehicles, smart homes,
Internet of Things (IoT) and virtual/augmented reality. Compared to fourth-generation
(4G) wireless systems, 5G ones offer advantages in terms of data rate, reliability, latency,
energy efficiency, and mobility. To fulfill these objectives, 5G needs to operate at high
frequency bands, with more base stations in a smaller area, to provide a better reliability
and transmission quality to the users [1–3].

That explains why in the last few years, cooperative multiple-input multiple-output
(MIMO) systems have attracted a lot of attention for 5G mobile networks to increase the
transmission coverage area, data rates and performance of wireless communications [4].
Cooperative MIMO systems provide spatial diversity and spatial multiplexing due to
the use of multiple antennas to transmit and receive signals at each node of the systems.
However, individual channel estimation in a cooperative MIMO system is a fundamental
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problem to solve, since the reliability of the system greatly depends on the accuracy of
channel state information (CSI) in each hop.

During the last two decades, tensor models have been widely used for designing
wireless communication systems [5,6]. Tensor-based approaches allow taking different
diversities (space, time, frequency, code, polarization, etc.) into account during the system
design and developing semi-blind receivers for jointly estimating the channels and symbol
matrices under more relaxed conditions than matrix-based methods. Many receivers exploit
the two most popular tensor decompositions, namely the Tucker [7] and Parallel Factors
Analysis (PARAFAC) [8] models, as in [9–14]. However, during the last decade, the design
of tensor-based wireless communication systems has led to the development of several
new tensor models such as, for instance, the nested PARAFAC [15] and nested Tucker [16]
models. See for instance their use in the context of point-to-point MIMO systems [17]
and cooperative MIMO systems [18–22].

In the context of cooperative systems, some works are dedicated to the use of a training
sequence for estimating the channels in a supervised way, as in [14,23]. Such supervised sys-
tems are bandwidth-consuming, which explains the development of semi-blind receivers
to jointly estimate the transmitted information symbols and the channels, i.e., without the
use of training sequences, such as in the case for the systems briefly introduced below.
Many works combine cooperative MIMO systems with different space/time/frequency
codings to increase system diversity and obtain better performance in terms of chan-
nel and symbol estimation. Among the used codings, one can mention the Khatri–Rao
space–time (KRST) coding [18,19,24,25], the multiple Khatri–Rao and Kronecker space–time
(MKRST and MKronST) codings [17,26], the tensor space–time (TST) [27–29] and tensor–
space–time–frequency (TSTF) codings [30]. Depending on the coding chosen for the relay
system, different tensor models are obtained for the signals received at the relay and desti-
nation nodes. An exploitation of these models makes it possible to derive two families of
receivers. One is made up of the most common receivers based on iterative algorithms such
as alternating least squares (ALS) or the Levenbergh–Marquardt (LM) method. The other
is composed of closed-form algorithms based on singular value decomposition (SVD)
calculation, such as Khatri–Rao and Kronecker factorization algorithms, which are denoted
KRF and KronF respectively.

In Table 1, the tensor-based MIMO cooperative systems of the above cited references
are compared in terms of system type (number of hops), coding, tensor model, and receiver,
with the proposed MIMO relay system, which is referenced as “New” in Table 1.

Table 1. Tensor-based MIMO cooperative systems.

Ref. System Types Codings Tensor Models Receivers

[24] two-hop KRST PARAFAC/ PARATUCK ALS

[18] two-hop KRST nested PARAFAC ALS

[19] two-hop KRST nested PARAFAC KRF

[16] two-hop TST nested TD ALS-KronF

[26] two-hop MKRST/MKronST nested PARAFAC KRF/KronF

[28] two-hop TST coupled nested TD KronF

[29] three-hop TST + PARAFAC nested TD coupled SVD/ALS

[22] three-hop KRST nested PARAFAC ALS/KRF

[21] multi-hop TST high-order nested TD KronF

[25] multi-hop KRST nested PARAFAC KRF

New two-hop TSTF+MSMKron generalized-Tucker ALS-KronF/THOSVD

We now briefly comment on the relay systems compared in Table 1 from a historical
perspective. First, it is important to note that all these systems consider an amplify-and-
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forward (AF) protocol at the relays except the system in [26] for which the AF protocol is
compared with the decode-and-forward (DF) and estimate-and-forward (EF) ones, showing
that the use of these last two protocols allows significantly improving the SER performance
at the cost of an additional computational complexity at the relay. From a coding point of
view, the Khatri–Rao space–time (KRST) coding was firstly used in [18,19,24] for a two-hop
system and then in [25] for a multi-hop system. In [22], KRST coding is combined with a
rotation coding matrix for a three-hop system.

The tensor space–time (TST) coding initialy proposed in [27], in the context of point-to-
point systems, was used for a two-hop system in [16], leading to a new tensor model called
nested Tucker decomposition (TD) and then for a multi-hop system in [21]. In this last
reference, a new tensor model called high-order nested Tucker decomposition (HONTD)
was introduced. In [28], TST coding is used in a two-hop multi-relay system where the
relays directly and sequentially communicate with the destination node. The sequential
transmission from the relays to the destination leads to a new coupled nested TD model.
In [29], TST coding is combined with a PARAFAC coding structure for a two half-duplex
relays system. Two new codings, denoted MKRST and MKronST, were proposed in [26] for
a two-hop system, leading to a nested PARAFAC model for the tensor of signals received at
destination which is exploited to develop closed-form semi-blind receivers for joint symbol
and channel estimation.

An important difference between the systems in Table 1 and the system presented in
this paper concerns the a priori information needed to eliminate scaling ambiguities. Thus,
our system only requires a priori knowledge of one entry of the symbol matrices, whereas
all the systems in Table 1 also require knowledge of one entry or of one row of the channel
matrices, which is a much more restrictive assumption.

This paper proposes a new two-hop OFDM-CDMA MIMO relay system which com-
bines a tensor space–time–frequency (TSTF) coding with a multiple Kronecker product
of symbol matrices (MSMKron) at the source and relay nodes. This new coding scheme,
called TSTF-MSMKron coding, can be viewed as a generalization of the codings proposed
in [26,30], with the aim of increasing the diversity gain. It is established that the signals
received at the relay and destination nodes satisfy generalized Tucker models whose core
tensors are the coding tensors. Assuming the coding tensors are known at both nodes,
the multilinear structure of tensor models is exploited to derive two semi-blind receivers
for jointly estimating the symbol matrices and individual channels. Necessary conditions
for parameter identifiability with each receiver are established. Extensive Monte Carlo
simulations illustrate the effectiveness of the proposed TSTF-MSMKron coding and semi-
blind receivers. Note that our two-hop MIMO relay system differs mainly from the
systems compared in Table 1 by the proposed TSTF-MSMMKron coding scheme which
induces a greater diversity gain than the codings used by the systems referenced in Table 1.
Another important difference lies in the consideration of frequency-dependent channels,
i.e., three-dimensional channels. These assumptions lead to received signal tensors at the
relay and the destination that satisfy generalized Tucker models whose essential unique-
ness is ensured by the a priori knowledge of coding tensors. Scalar ambiguities can be
eliminated assuming the knowledge of only one symbol per each symbol matrix. Exploiting
the tensor models of received signals allows developing two types of semi-blind receivers
for estimating the information symbols and the individual channels: one is iterative based
on the Bi-ALS algorithm to estimate each individual channel and the Kronecker product
of symbol matrices, combined with the KronF method to separate the symbol matrices,
while the other one is closed form and based on the THOSVD algorithm [31], which allows
simultaneously estimating each individual channel and symbol matrix. Note that unlike
almost all relay systems existing in the literature which use the AF protocol, the proposed
two-hop system uses the DF protocol at the relay, which greatly facilitates its generalization
to the multi-hop case.

The main contributions of the paper can be summarized as follows:
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• A new two-hop OFDM-CDMA system that combines a TSTF coding with a multiple
Kronecker product of symbol matrices (MSMKron) at the source and relay nodes
is proposed.

• It is established that the tensor of signals received at each hop satisfies a generalized
Tucker model.

• By exploiting the tensor model of the signals received at the relay and destination
nodes, two semi-blind receivers are derived to jointly estimate the individual source–
relay and relay–destination channels and transmitted symbols.

• System model uniqueness and parameter identifiability conditions for each proposed
receiver are analyzed.

• The performance of the TSTF-MSMKron coding and the impact of design parameters
on the symbol error rate (SER) are first evaluated using the zero-forcing (ZF) receiver,
i.e., under the assumption of a perfect channel knowledge, by means of extensive
Monte Carlo simulations. Then, the proposed semi-blind receivers are compared for
symbol and channel estimation.

The rest of the paper is organized as follows. Section 2 presents tensor
preliminaries. Section 3 first describes the system model, presenting the TSTF-MSMKron
coding and the signals received at the relay and destination. These signals form two tensors
that satisfy generalized Tucker decompositions. In Section 4, two semi-blind receivers are
proposed to jointly estimate the symbol matrices and channels. Necessary conditions for
parameter identifiability are derived for each receiver. In Section 6, extensive Monte Carlo
simulation results are provided to illustrate the effectiveness of the proposed two-hop relay
system. Section 7 concludes the paper.

Notation: scalars, column vectors, matrices, and tensors are denoted by lowercase,
boldface lowercase, boldface uppercase and boldface calligraphic letters, e.g., x, x, X, and X ,
respectively. The transpose, complex conjugate, complex conjugate transpose, and Moore–
Penrose pseudo-inverse of X are represented by XT, X∗, XH and X†, respectively. We denote
by xi,j the (i, j) element and by Xi. (resp. X.j) the ith row (resp. jth column) of X ∈ CI×J .
The (i1,. . . ,iN) element of the N-order tensor X ∈ CI1×...×IN will be written xi1,...,iN . IR and
IN,R represent the identity matrix of size R× R and the identity tensor of N-order and size
R× R× . . . .× R, respectively. X̂ denotes an estimate of X and ˆ̂X represents the matrix X̂
after ambiguities suppression.

XI1×I2 I3 represents an unfolding of the third-order tensor X ∈ CI1×I2×I3 of dimension
I1 × I2 I3. The vec and unvec operators are defined by xI2 I3 I1 = vec(XI1×I2 I3) ∈ CI2 I3 I1 ↔
XI1×I2 I3 = unvec(xI2 I3 I1). By slicing the third-order tensor X along each mode, we obtain
three types of matrix slices called horizontal, lateral, and frontal slices, which are denoted,
respectively, as follows:

Xi1.. ∈ CI2×I3 , X.i2. ∈ CI3×I1 and X..i3 ∈ CI1×I2 ,

with i1 ∈ [1, I1], i2 ∈ [1, I2] and i3 ∈ [1, I3]. The Kronecker, Khatri–Rao, and outer products
are denoted by ⊗, �, and ◦, respectively. The operator bdiag(.) forms a block-diagonal
matrix from its matrix arguments, with bdiag(X..k) , bdiag(X..1, . . . , X..K) ∈ CKI×KJ , where
X..k ∈ CI×J is the kth frontal slice of X ∈ CI×J×K.

All acronyms used in the paper are summarized after Section 7.

2. Tensor Preliminaries

The mode-n product between a tensor G ∈ CR1×...×Rn−1×Rn×Rn+1×...×RN and a matrix
A ∈ CIn×Rn , denoted by G ×n A, gives an N-order tensor X of size R1 × . . .× Rn−1 × In ×
Rn+1 × . . .× RN , which is defined by:

xr1,...,rn−1,in ,rn+1,...,rN =
Rn

∑
rn=1

gr1,...,rn−1,rn ,rn+1,...,rN ain ,rn . (1)
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The mode-n product between two tensors G ∈ CR1×...×Rn−1×Rn×Rn+1×...×RN1×IN1+1×...×IN

and A ∈ CIn×Rn×IN1+1×...×IN is denoted by G ×n A, with n ∈ [1, N1]. This product gives an
N-order tensor X ∈ CR1×...×Rn−1×In×Rn+1×...×RN1×IN1+1×...×IN , which is defined as [30]:

xr1,...,rn−1,in ,rn+1,...,rN1 ,iN1+1,...,iN =
Rn

∑
rn=1

gr1,...,rn−1,rn ,rn+1,...,rN1 ,iN1+1,...,iN ain ,rn ,iN1+1,...,iN . (2)

The sum is over the second index of the tensor A, as for the mode-n product (1)
between a tensor and a matrix. For example, consider the third-order tensors G ∈ CR1×I2×I3

and A ∈ CI1×R1×I3 . The mode-1 product X = G ×1 A is given by:

xi1,i2,i3 =
R1

∑
r1

gr1,i2,i3 ai1,r1,i3 . (3)

We now introduce the notion of a generalized Tucker-(N1, N) model for an N-order
tensor X ∈ CI1×...×IN , with N1 < N, which is defined as [32,33]:

xi1,..,iN =
R1

∑
r1=1

. . .
RN1

∑
rN1=1

gr1,...,rN1 ,iN1+1,...,iN

N1

∏
n=1

a(n)in ,rn ,Sn
. (4)

where Sn is an ordered subset of the set {iN1+1, . . . , iN}. This model can be written in terms
of mode-n products as:

X = G ×N1
n=1 A

(n), (5)

where G ∈ CR1×...×RN1×IN1+1×...×IN is the core tensor, and A(n) ∈ CIn×Rn×Jn are tensor
factors for n ∈ [1, N1], where Jn is a subset of {IN1+1, . . . , IN}. For example, let us consider
two factors, where the first one is a third-order tensor A(1) ∈ CI1×R1×I3 and the second one
is a matrix A(2) ∈ CI2×R2 . A generalized Tucker-(2, 4) model is given by:

X = G ×1 A(1) ×2 A(2) ∈ CI1×I2×I3×I4 , (6)

where G ∈ CR1×R2×I3×I4 . In scalar form, Equation (6) can be written as:

xi1,i2,i3,i4 =
R1

∑
r1=1

R2

∑
r2=1

gr1,r2,i3,i4 a(1)i1,r1,i3
a(2)i2,r2

. (7)

3. System Model
3.1. Presentation of the Proposed Two-Hop System

Consider a two-hop MIMO OFDM-CDMA system, as illustrated in Figure 1. This
system is equipped with MS, MR and MD antennas at the source, relay and destina-
tion nodes, respectively. The source–relay (H(SR) ∈ CMR×MS×F) and relay–destination
(H(RD) ∈ CMD×MR×F) channels are assumed to be flat Rayleigh fading, which is rep-
resented by third-order tensors whose coefficients are zero-mean circularly symmetric
complex Gaussian i.i.d. (independent and identically distributed) random variables that
are constant during at least P transmission blocks.

The decode-and-forward (DF) protocol is considered at the relay, and the transmis-
sion occurs in two hops. During the first one, the coded symbols are transmitted by
the source to the relay via the channel H(SR) and decoded at the relay. During the sec-
ond one, the estimated symbols are re-encoded and then re-transmitted by the relay to
the destination via the channel H(RD). Each symbol matrix S(l) = [s(l)nl ,rl ] ∈ CNl×Rl ,
with rl ∈ [1, Rl ], nl ∈ [1, Nl ], for l ∈ [1, L], is composed of Rl data streams, each one contain-
ing Nl information symbols. The transmission protocol is detailed in the next section which
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defines the TSTF-MSMKron coding. Then, in Sections 3.3 and 3.4, the tensors of signals
received at the relay and the destination will be described, respectively.

Figure 1. Block diagram of the two-hop MIMO relay system.

3.2. TSTF-MSMKron Coding

In the proposed relay system, the coding at the source node is composed of two steps.
During the first one, a multiple Kronecker product of L symbol matrices is calculated as:

S = ⊗L
l=1S(l) , S(1) ⊗ . . .⊗ S(L) ∈ CN×R, (8)

where N = ∏L
l=1 Nl , and R = ∏L

l=1 Rl . The scalar form of (8) is:

sn,r =
L

∏
l=1

s(l)nl ,rl , n ∈ [1, N] , r ∈ [1, R], (9)

with n = n(L)
L + (n(L−1)

L−1 − 1)NL + · · ·+ (n(1)
1 − 1)∏L

l=2 Nl , and r = r(L)
L + (r(L−1)

L−1 − 1)RL +

· · ·+ (r(1)1 − 1)∏L
l=2 Rl , where n(l)

l ∈ [1, Nl ] and r(l)l ∈ [1, Rl ] denote the indices nl and rl

in s(l)nl ,rl . This operation, called MSMKron coding, corresponds to a simplified version of the
MKronST coding [26] without a known precoding matrix. This coding induces time and
code spreadings of each symbol s(l)nl ,rl due to the multiple Kronecker product of the symbol
matrix S(l) with the other matrices S(l′) , l′ = 1, · · · , L and l′ 6= l.

The transmission being composed of P time-slots means each symbol s(l)nl ,rl is repeated

P
( L

∏
l′=1
l′ 6=l

Nl′
)( L

∏
l′=1
l′ 6=l

Rl′
)

times, which implies an increase of time and code diversities when

increasing the dimensions Nl and Rl , respectively.
During the second step, the MSMKron coding is combined with a tensor space–time–

frequency (TSTF) coding [30] carried out by means of the (L+3)-order tensor
G(S) ∈ CMS×R1×...×RL×F×P in such a way that the tensor of signals coded at the source
satisfies an (L+3)-order Tucker model given by:

V (S) = G(S) ×1 IMS ×2 S(1) ×3 . . .×L+1 S(L) ×L+2 IF ×L+3 IP ∈ CMS×N1×...×NL×F×P. (10)

Note that the core tensor of this decomposition is the coding tensor G(S). In scalar
notation, the coded signals transmitted by the mth

S antenna at the source, using the f th

subcarrier, during the pth time slot are given by:

v(S)mS ,n1,...,nL , f ,p =
R1

∑
r1=1

...
RL

∑
rL=1

g(S)mS ,r1,...,rL , f ,p

L

∏
l=1

s(l)nl ,rl (11)

where mS ∈ [1, MS], f ∈ [1, F], p ∈ [1, P]. The TSTF-MSMKron coding increases space–
time–frequency diversity, as will be illustrated in the simulations.
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3.3. Tensor of Signals Received at the Relay

In the noise-free case and assuming a flat Rayleigh fading propagation channel, the sig-
nal x(SR)

mR ,n1,...,nL , f ,p received at the mth
R antenna of the relay, during the nth

l symbol period of

the pth block and associated with the f th subcarrier, is given by:

x(SR)
mR ,n1,...,nL , f ,p =

MS

∑
mS=1

h(SR)
mR ,mS , f v(S)mS ,n1,...,nL , f ,p (12)

where mR ∈ [1, MR] and h(SR)
mR ,mS , f is an entry of the channel H(SR) ∈ CMR×MS×F. In terms

of mode-n products, we have:

X (SR) = V (S) ×1 H(SR) ∈ CMR×N1×...×NL×F×P. (13)

Note that the transmission via channel H(SR) can be interpreted as a mode-1 linear
transformation applied to the tensor V (S) of coded signals. Substituting (11) into (12) gives
the signal received at the relay written in scalar form as:

x(SR)
mR ,n1,...,nL , f ,p =

MS

∑
mS=1

R1

∑
r1=1

. . .
RL

∑
rL=1

g(S)mS ,r1,...,rL , f ,ph(SR)
mR ,mS , f

L

∏
l=1

s(l)nl ,rl . (14)

The signals received at the relay form the tensor X (SR) that satisfies a generalized
Tucker-(L + 1, L + 3) model given by:

X (SR) = G(S) ×1 H(SR) ×2 S(1) ×3 . . .×L+1 S(L) ×L+2 IF ×L+3 IP, (15)

where S(l) represents the symbol matrices encoded by the TSTF-MSMKron coding for
l ∈ [1, L], and G(S) is the core tensor of the Tucker model. As is well known, knowledge of
the core tensor implies the uniqueness of this model. Combining modes 2 to L+ 1 of tensors
G(S) and X (SR) results in contracted forms G(S)

c ∈ CMS×R×F×P and X (SR)
c ∈ CMR×N×F×P,

and Equation (15) can be rewritten as:

X (SR)
c = G(S)

c ×1 H(SR) ×2 S×3 IF ×4 IP. (16)

From the Tucker model (16), it is easy to deduce the following matrix unfoldings of
the tensor X (SR):

X(SR)
FPN×MR

= (IFP ⊗ S)G(S)
FPR×FMS

H(SR)
FMS×MR

∈ CFPN×MR , (17)

X(SR)
PFMR×N =

(
IP ⊗ bdiag

(
H(SR)

.. f

))
G(S)

PFMS×RST ∈ CPFMR×N , (18)

X(SR)
MR N×FP =

(
H(SR)

MR×FMS
⊗ S

)
G(S)

FMSR×FP ∈ CMR N×FP, (19)

with H(SR)
.. f ∈ CMR×MS and bdiag(.) previously defined in the notation. Note that the

identity matrix IFP ∈ RFP×FP in (17) is associated with FP repetitions of the symbol
matrices inducing time-frequency diversity for the system.

The block structure of the matrix unfoldings G(S)
FPR×FMS

and G(S)
FMSR×FP

in Equations (17) and (19), respectively, is defined as follows:

G(S)
FPR×FMS

= bdiag
[

vec(G(S)
1.. f .) . . . vec(G(S)

MS .. f .)
]
= bdiag

([
G(S)

PR×MS

]
f

)
, (20)
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G(S)
FMSR×FP = bdiag

[
vec(G(S)

... f 1) . . . vec(G(S)
... f P)

]
= bdiag

([
G(S)

MSR×P

]
f

)
. (21)

G(S)
FPR×FMS

in (20) is a block-diagonal matrix, formed of F diagonal blocks of dimension
PR×MS, each block being formed of MS column vectors corresponding to a vectorized
form of the tensor slice G(S)

mS .. f . of size R1 × . . . × RL × P, for mS ∈ [1, MS], such that

vec(G(S)
mS .. f .) ∈ CPR. Similarly, G(S)

FMSR×FP in (21) is a block-diagonal matrix whose diagonal

blocks are of dimension MSR× P, with vec(G(S)
... f p) ∈ CMSR.

To illustrate the matrix unfolding (21), consider the case where R = P = MS = F = 2,
leading to the following matrix:

G(S)
FMSR×FP =



g(S)1111 g(S)1112

g(S)2111 g(S)2112

g(S)1211 g(S)1212

g(S)2211 g(S)2212

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

g(S)1121 g(S)1122

g(S)2121 g(S)2122

g(S)1221 g(S)1222

g(S)2221 g(S)2222


. (22)

3.4. Tensor of Signals Received at the Destination

With the DF protocol, the symbols received at the relay are first decoded by means
of one of the receivers described in Section 4, leading to the estimated symbol matrices
ˆ̂S(l), which are also written as S(l)

R . The estimated symbols are then re-encoded at the relay
using a TSTF-MSMKron coding, with the tensor coding G(R) ∈ CMR×R1×...×RL×F×P. The re-
encoded signals are transmitted by the relay to the destination via the channel H(RD) ∈
CMD×MR×F. The signals received at the destination are similar to the signals received at
the relay, defined by Equations (14) and (15), with the following correspondences:(

G(S),H(SR), S(l)
)
↔
(
G(R),H(RD), S(l)

R

)
, (23)

(MR, MS)↔ (MD, MR), (24)

Similar to (14), in the noiseless case, the signal received at the mth
D antenna of the

destination node, during the nth
l symbol period of the pth time block and associated with

the f th subcarrier, is given by:

x(RD)
mD ,n1,...,nL , f ,p =

MR

∑
mR=1

R1

∑
r1=1

...
RL

∑
rL=1

g(R)
mR ,r1,...,rL , f ,ph(RD)

mD ,mR , f

L

∏
l=1

[s(l)R ]nl ,rl , (25)

and the generalized Tucker-(L + 1, L + 3) model (15) becomes:

X (RD) = G(R) ×1 H(RD) ×2 S(1)
R ×3 ...×L+1 S(L)

R ×L+2 IF ×L+3 IP, (26)

where X (RD) ∈ CMD×N1×...×NL×F×P. Matrix unfoldings of this tensor can be deduced
from (17)–(19) using the correspondences (23) and (24) with G(R)

PFMR×R, G(R)
FPR×FMR

and

G(R)
FMRR×FP instead of G(S)

PFMS×R, G(S)
FPR×FMS

and G(S)
FMSR×FP, respectively.
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The proposed OFDM-CDMA relaying system is illustrated by means of the block
diagram in Figure 2.

MSMKron
coding

Source-relay
channel

Source

Signals received
at relay

Receiver

^

MSMKron
coding

Relay

ReceiverRelay-destination
channel

Signals received
at destination

^

Destination

Relay

TSTF
coding

TSTF
coding

Figure 2. Block diagram of the proposed two-hop MIMO OFDM-CDMA communication system.

The system design parameters and the definitions of the system matrices and tensors
are summarized in Tables 2 and 3, respectively.

Table 2. System design parameters.

System Design Parameters Definitions

L number of symbol matrices

Rl number of data streams in S(l)

Nl number of symbols in the Rth
l data stream

F number of subcarriers

P number of time blocks

MS number of antennas at the source

MR number of antennas at the relay

MD number of antennas at the destination

Table 3. System matrices and tensors.

Symbol Matrices

S(l) ∈ CNl×Rl , for l ∈ [1, L]

S = S(1) ⊗ ...⊗ S(L) ∈ CN×R
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Table 3. Cont.

N = ∏L
l=1 Nl , R = ∏L

l=1 Rl

Channel tensors

H(SR) ∈ CMR×MS×F

H(RD) ∈ CMD×MR×F

Space-time-frequency coding tensors

G(S) ∈ CMS×R1×...×RL×F×P

G(R) ∈ CMR×R1×...×RL×F×P

Received signals tensors

X (SR) ∈ CMR×N1×...×NL×F×P

X (RD) ∈ CMD×N1×...×NL×F×P

4. Semi-Blind Receivers

In this section, two semi-blind receivers are proposed to estimate the channel tensors
and symbol matrices at the relay and destination nodes. We assume that the coding tensors
G(S) and G(R) are known. We also assume that one symbol of each symbol matrix is
known to eliminate scalar ambiguities. The symbol matrices and the channel tensor H(SR)

are estimated at the relay, while the symbol matrices and the channel tensor H(RD) are
estimated at the destination. The proposed receivers are detailed for the relay. The same
receivers can be derived for the destination, using the correspondences (23) and (24).
The first one is based on the alternating least squares (ALS) algorithm to estimate the
channel and the Kronecker product of symbol matrices, which is followed by the Kronecker
factorization (KronF) method to separate the symbol matrices, while the second one is a
closed-form solution allowing to jointly estimate the channel and the symbol matrices by
means of the truncated higher-order singular value decomposition (THOSVD) algorithm.

4.1. Bi-ALS-KronF Receiver

In the first step, the bi-alternating least squares (Bi-ALS) algorithm is used to jointly
estimate the MSMKron product S and the channel tensor H(SR). Then, the KronF algo-
rithm is applied to separate the symbol matrices. The Bi-ALS algorithm results from the
minimization of the following cost function deduced from Equation (16):

min
S,H(SR)

‖ X (SR)
c − G(S)

c ×1 H(SR) ×2 S×3 IF ×4 IP ‖2
F, (27)

where ‖ · ‖F is the Frobenius norm. The Bi-ALS method replaces the optimization prob-
lem (27) by two LS sub-problems deduced from the matrix unfoldings (17) and (18), leading
to the alternate minimization of the following LS criteria:

min
H(SR)

FMS×MR

‖ X(SR)
FPN×MR

−
[(

IFP ⊗ Ŝ[it− 1]
)
G(S)

FPR×FMS

]
H(SR)

FMS×MR
‖2

F−→ Ĥ(SR)
FMS×MR

[it], (28)

min
S
‖ X(SR)

PFMR×N −
(

IP ⊗ bdiag
(

Ĥ(SR)
.. f [it]

))
G(S)

PFMS×RST ‖2
F−→ ŜT

[it]. (29)

The update equations at iteration [it] are given by:

Ĥ(SR)
FMS×MR

[it] =
[(

IFP ⊗ Ŝ[it− 1]
)
G(S)

FPR×FMS

]†
X(SR)

FPN×MR
, (30)
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ŜT
[it] =

[(
IP ⊗ bdiag

(
Ĥ(SR)

.. f [it]
))

G(S)
PFMS×R

]†
X(SR)

PFMR×N . (31)

The matrices
[
(IFP ⊗ S)G(S)

FPR×FMS

]
and

[(
IP ⊗ bdiag

(
H(SR)

.. f

))
G(S)

PFMS×R

]
must have

full column rank to ensure the uniqueness of the LS estimates, which implies the following
necessary conditions: MS ≤ PN and R ≤ PFMR.

To simplify the computation of the estimate Ĥ(SR)
FMS×MR

in Equation (30), we assume

that the matrices
[
G(S)

PR×MS

]
f

and S have full column rank, which implies: MS ≤ PR

and R ≤ N, respectively. Moreover, to simplify the computation of Ŝ in Equation (31),
we assume that the unfolding G(S)

PFMS×R is chosen as a full column rank truncated DFT
matrix, which allows us to replace its pseudo-inverse by its transconjugate, implying the
necessary condition: R ≤ PFMS. We also assume that H(SR)

.. f has full column rank, implying

MS ≤ MR. Exploiting these assumptions and substituting the unfolding G(S)
FPR×FMS

by
Equation (20) simplifies the LS estimates (30) and (31) as:

Ĥ(SR)
FMS×MR

[it] = bdiag
([

G(S)
PR×MS

]†

f

)(
IFP ⊗ Ŝ†

[it− 1]
)

X(SR)
FPN×MR

, (32)

ŜT
[it] =

(
G(S)

PFMS×R

)H(
IP ⊗ bdiag

(
Ĥ(SR)†

.. f [it]
))

X(SR)
PFMR×N . (33)

The Bi-ALS algorithms (32) and (33) are simplified versions of (30) and (31) in terms of
pseudo-inverses computation at the price of additional constraints on the design parameters.

The error at the [it]th iteration, deduced from (17), is considered for deciding the
convergence of the Bi-ALS algorithm:

err[it] =‖ X(SR)
FPN×MR

−
(
IFP ⊗ Ŝ[it]

)
G(S)

FPR×FMS
Ĥ(SR)

FMS×MR
[it] ‖2

F . (34)

Convergence at the [it]th iteration is declared when this error does not significantly
change between two successive iterations, i.e., |err[it − 1] − err[it]| ≤ ε, where ε is a
predefined threshold. Since the core tensor G(S) is assumed to be known, there is no
permutation ambiguity, and the generalized Tucker model (16) is unique up to scalar
scaling ambiguities. The LS estimates ˆ̂H(SR)

FMS×MR
and ˆ̂S, at convergence, after correcting the

ambiguities are given by:

ˆ̂S = Ŝ(λ(S))−1, ˆ̂H(SR)
FMS×MR

= Ĥ(SR)
FMS×MR

(λ(H))−1, with λ(S)λ(H) = 1. (35)

For eliminating these scaling ambiguities, it is sufficient to assume that one element of
S is known a priori, e.g., s11 = 1. Under this assumption, λ(S) is calculated as: λ(S) = ŝ11.
The symbol matrices S(l) are then estimated by means of the KronF algorithm presented in
Appendix A, minimizing the following LS cost function:

min
S(l),l∈[1,L]

‖ ˆ̂S− S(1) ⊗ ...⊗ S(L) ‖2
F . (36)

After applying the KronF algorithm, the estimated symbol matrix Ŝ(l) is obtained by
unvectorizing ŝ(l) as:

Ŝ(l)
= unvec(ŝ(l)) ∈ CNl×Rl , (37)

and assuming s(l)11 = 1, the scalar ambiguity is corrected by:

ˆ̂S(l) = Ŝ(l)
(ŝ(l)11 )

−1. (38)
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As mentioned previously, the Bi-ALS-KronF receiver at the destination can be deduced
from the one at the relay, using the correspondences (23) and (24), to estimate the channel
H(RD) ∈ CMD×MR×F and the symbol matrices denoted S(l)

R ∈ CNl×Rl . To eliminate the
scaling ambiguities in the second hop, we use the same relation (38) for the KronF algorithm.
At each hop, the estimated symbols are obtained after a projection onto the symbol alphabet.
The Bi-ALS-KronF algorithm is summarized in Algorithm 1.

Algorithm 1 Bi-ALS-KronF Receiver for Estimating the Symbol Matrices S(l) and the
Channels H(SR) and H(RD).
Input: tensors X (SR), X (RD), G(S), G(R)

Output: Estimated symbol matrices and channels
First hop: source–relay
- Step 1: Bi-ALS algorithm
it = 0
(1) Initialization of S(l)[0] with symbols randomly drawn from the alphabet and s(l)11 = 1,
for l ∈ [1, L].
(2) Update the estimates of H(SR)

FMS×MR
and S using Equations (30) and (31) or (32) and (33).

(3) Calculate the error (34) and |err[it− 1]− err[it]|.
- if |err[it− 1]− err[it]| ≤ ε or it = maximum number of iterations
- stop
- else it→ it + 1;
(4) Eliminate the scaling ambiguities using Equation (35).

- Step 2: KronF algorithm
(5) Build the rank-one tensor: ˆ̂S = reshape( ˆ̂S, [R1N1, ..., RLNL]).
(6) Estimate each vector ŝ(l) by means of the KronF algorithm recalled in Appendix A,
and unvectorize it using Equation (37).
(7) Eliminate the scaling ambiguities using Equation (38).
(8) Project the estimated symbols onto the symbol alphabet.

Second hop: relay–destination
- Step 1: Bi-ALS algorithm
- Apply the stages (1) to (4) of the first hop, using the correspondences (23) and (24).

- Step 2: KronF algorithm
- Apply the stages (5) to (8) of the first hop, using the correspondences (23) and (24).

4.2. THOSVD-Based Receiver

The THOSVD-based receiver is proposed to jointly estimate the channels and the
symbol matrices. This closed-form solution can be viewed as a generalization of the
KronF algorithm used to separate the symbol matrices. The difference is that we can
now simultaneously estimate all the matrices (H(SR)

MR×FMS
, S(1), . . . , S(L)). From the matrix

unfolding (19), with S and G(S)
FMSR×FP replaced by their expressions (8) and (21), we deduce

the following LS estimate of the multiple Kronecker product:

Z(SR) ,
̂

H(SR)
MR×FMS

⊗ S(1) ⊗ . . .⊗ S(L) = X(SR)
MR N×FP

[
bdiag

([
G(S)

MSR×P

]†

f

)]
, (39)

with Z(SR) ∈ CMR N×FMSR. The unfolding
[
G(S)

MSR×P

]
f

must be full row rank for ensuring

the uniqueness of this LS estimate, which induces the necessary condition: MSR ≤ P.
The matrices S(l) and H(SR)

MR×FMS
are jointly estimated by means of the rank-one approximation-

based KronF algorithm, which is described in Appendix A. The THOSVD receiver at the
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destination is deduced from the one at the relay, using the correspondences (23) and (24),
to estimate the channel H(RD) and the symbol matrices S(l)

R . The THOSVD receiver is
summarized in Algorithm 2.

Algorithm 2 THOSVD Receiver for Estimating the Symbol Matrices S(l) and the Channels
H(SR) and H(RD).
Input: tensors X (SR), X (RD), G(S), G(R)

Output: Estimated symbol matrices and channels
First hop: source–relay
(1) Calculate the LS estimate Z(SR) defined in (39).
(2) Build the rank-one tensor Z (SR) of size R1N1 × . . .× RLNL × FMS MR from Z(SR).
(3) Compute the SVD of each mode-n unfolding of Z (SR), and calculate the estimates

ŝ(l) = vec(Ŝ(l)
) and ĥ

(SR)
= vec(Ĥ(SR)

MR×FMS
) as the first left singular vector of each mode-n

unfolding.

(4) Unvectorize ŝ(l) and ĥ
(SR)

to obtain the estimates ˆ̂S(l) and ˆ̂H(SR)
MR×FMS

.
(5) Eliminate the scaling ambiguities.
(6) Project the estimated symbols onto the symbol alphabet.

Second hop: relay–destination
- Apply the stages (1) to (6) of the first hop, using the correspondences (23) and (24).

4.3. Zero-Forcing (ZF)-KronF Receiver

To evaluate the impact of the design parameters on the system performance, we use
the zero-forcing (ZF)-KronF receiver, which assumes a perfect channel knowledge. The LS
estimate of S is obtained using (31) or (33), with H(SR)

.. f [it] replaced by the true channel slice

H(SR)
.. f , which gives:

ŜT
ZF =

[(
IP ⊗ bdiag

(
H(SR)

.. f

))
G(S)

PFMS×R

]†
X(SR)

PFMR×N , (40)

or
ŜT

ZF =
(

G(S)
PFMS×R

)H(
IP ⊗ bdiag

(
H(SR)†

.. f

))
X(SR)

PFMR×N . (41)

As for the Bi-ALS algorithm, the use of (40) or (41) implies the following necessary
conditions: R ≤ PFMR or R ≤ PFMS, and MS ≤ MR. Then, the symbol matrices S(l) are
estimated using the KronF algorithm as in the second step of the Bi-ALS-KronF receiver.
For the second hop, the ZF-KronF receiver is similar to the one in the first hop with
the correspondences (23) and (24), H(RD)

.. f considered known and the matrix unfolding

G(R)
PFMR×R chosen as a truncated DFT matrix. The uniqueness of the ZF solution for the

second hop implies the necessary conditions: R ≤ PFMD or R ≤ PFMR, and MR ≤ MD.
Table 4 summarizes the necessary conditions for parameter identifiability with each re-

ceiver. Comparing the identifiability conditions for the Bi-ALS-KronF algorithms (32) and (33)
with the ones for the Bi-ALS-KronF algorithms (30) and (31), we can deduce some implica-
tions. Indeed, for the estimate (32), the conditions MS ≤ PR and R ≤ N imply MS ≤ PN,
i.e., the identifiability condition for the LS solution (30). For the estimate (33), the conditions
R ≤ PFMS and MS ≤ MR imply R ≤ PFMR, i.e., the identifiability condition for the LS
solution (31). In other words, if the identifiability conditions for (32) and (33) are satisfied,
then the ones for the Bi-ALS algorithm (30) and (31) are automatically satisfied. Note also
that R ≤ PFMS and MS ≤ PR imply R ≤ P2FR, which is always satisfied. Therefore,
the condition MS ≤ PR can be discarded. We can also conclude that the THOSVD receiver
is more restrictive than the Bi-ALS receivers in the sense that a higher value of P is required,
implying a reduction in the transmission rate. As the ZF-KronF receiver (41) only esti-
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mates the symbol matrices, its identifiability conditions are a subset of those of the second
Bi-ALS-KronF receiver.

Table 4. Identifiability conditions for the receivers.

Receiver Identifiability Conditions
(First Hop)

Identifiability Conditions
(Second Hop)

Bi-ALS-KronF R ≤ PFMR; R ≤ PFMD;
Equations (30) and (31) MS ≤ PN MR ≤ PN

Bi-ALS-KronF MS ≤ min(PR, MR); MR ≤ min(PR, MD);
Equations (32) and (33) R ≤ min(N, PFMS) R ≤ min(N, PFMR)

THOSVD MSR ≤ P; MRR ≤ P

ZF-KronF (40) R ≤ PFMR R ≤ PFMD

ZF-KronF (41) R ≤ PFMS; MS ≤ MR R ≤ PFMR; MR ≤ MD

5. Computational Complexity

In this section, we compare the computational complexity of the proposed THOSVD
and Bi-ALS-KronF receivers by evaluating the cost of SVD calculation, which is the most
expensive matrix operation. Note that for a matrix of dimensions I × J, the complexity
of SVD computation is O(I J min(I, J)). The complexities are evaluated by taking the
identifiability conditions into account.

The computational complexity of the HOSVD algorithm for an N-th-order tensor
X ∈ RI1×···×IN is of the order of O

(
(∑N

n=1 In)∏N
q=1 Iq

)
if In ≤ ∏N

q 6=n Iq, requiring to com-
pute N SVDs of In × In+1 . . . IN I1 . . . In−1 matrices for n ∈ [1, N].

The ALS algorithm requires, at each iteration, the overall computational complexity
O
(

R2 ∑N
n=1(∏

N
q 6=n Iq)

)
to compute the PARAFAC decomposition of a tensor X ∈ RI1×···×IN

assumed to be of rank R. This algorithm requires calculating N LS estimates, which needs
to pseudo-inverse ∏N

q 6=n Iq × R matrices, for n ∈ [1, N].
For estimating the L symbol matrices from their Kronecker product, the KronF algo-

rithm has a complexity of O((∑L
l=1 Nl Rl) ∏L

q=1 NqRq) flops.
In Table 5, the computational complexities of the Bi-ALS-KronF and THOSVD receivers

are compared for the first hop. The computational complexities for the second hop can be
easily derived using the correspondences (24) between the dimensions.

Table 5. Computational complexity of the Bi-AKS-KronF and THOSVD algorithms at the first hop.

Algorithms Computational Complexity

Bi-ALS-KronF (30) and
(31) O

(
F3 M2

SPN
)
+ O

(
R2PFMR

)
+ O

((
∑L

l=1 Nl Rl

)
∏L

q=1 NqRq

)
Bi-ALS-KronF (32) and
(33) O

(
M2

SPR
)
+ O

(
R2N

)
+ O

(
F3 M2

R MS
)
+ O

((
∑L

l=1 Nl Rl

)
∏L

q=1 NqRq

)
THOSVD O

(
P2FMSR

)
+ O

(
F2 M2

S MR
)
+ O

(
FMS MR(∑L

l=1 Nl Rl)∏L
q=1 NqRq

)

Note that simplifying the pseudo-inverses in (30) and (31) results in less computational
complexity for the Bi-ALS-KronF (32) and (33) than for Bi-ALS-KronF (30) and (31). Re-
garding the computational complexity of the closed and form THOSVD and based receiver,
it is generally lower than the one of the iterative Bi-ALS algorithms, which depends on the
number of iterations needed for convergence.

6. Simulation Results

In this section, we evaluate the performance of the proposed two-hop OFDM-CDMA
MIMO system and the associated receivers. First, in Section 6.1, we describe the simulations
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and present the considered performance criteria. In Section 6.2, we study the impact of
design parameters on the symbol error rate (SER), using the ZF-KronF receiver. Finally,
in Section 6.3, the proposed semi-blind receivers are compared in terms of SER and channel
normalized mean square error (NMSE).

6.1. Description of the Simulations

The noisy signals received at each hop, Y (SR) and Y (RD), respectively, are simulated as:

Y (SR) = X (SR) + α(SR)N (SR) ∈ CMR×N1×...×NL×F×P, (42)

Y (RD) = X (RD) + α(RD)N (RD) ∈ CMD×N1×...×NL×F×P, (43)

where N (SR) ∈ CMR×N1×...×NL×F×P and N (RD) ∈ CMD×N1×...×NL×F×P are additive white
Gaussian noise (AWGN) tensors whose entries are zero-mean circularly symmetric complex-
valued Gaussian random variables, the tensors X (SR) and X (RD) contain the noise-free
received signals obtained by means of Equations (15) and (26), respectively, and α(SR) and
α(RD) allow fixing the signal-to-noise ratio (SNR) calculated as:

SNR(SR) = 20 log

(
‖ X (SR) ‖F

α(SR) ‖ N (SR) ‖F

)
, (44)

SNR(RD) = 20 log

(
‖ X (RD) ‖F

α(RD) ‖ N (RD) ‖F

)
, (45)

which gives α(SR) = ‖X (SR)‖F

‖N (SR)‖F
10−SNR/20 and α(RD) = ‖X (RD)‖F

‖N (RD)‖F
10−SNR/20. Note that the

SNRs at the relay and destination nodes are chosen equal in the simulations. The channel
tensors H(SR) and H(RD) have i.i.d. complex Gaussian entries. The symbols of symbol ma-
trices S(l), for l ∈ [1, L], are randomly generated from the 16-QAM
(Quadrature Amplitude Modulation) alphabet with a uniform distribution. It is worth
mentioning that our proposed coding scheme and semi-blind receivers are not depen-
dent on a specific choice for the modulation format as presented in [34,35]. The proposed
system may operate with any modulation, although the resulting SER performance and
transmission rate will be affected by this choice. For instance, increasing the modulation
cardinality of M-PSK (phase-shift keying) or M-QAM type constellations (under the same
total transmit power constraint) would result in a higher transmission rate at the cost of
an SER performance degradation. In this work, we have adopted 16-QAM since it offers a
good tradeoff between SER performance and transmission rate

As mentioned before, the coding tensors are designed for each Monte Carlo run:
in such a way that, their matrix unfoldings G(S)

PFMS×R and G(R)
PFMR×R are truncated DFT

matrices. The performance criteria, plotted versus SNR, are calculated as:

NMSE(Z) =
1
K

K

∑
k=1

‖ Ẑ k −Z k ‖2
F

‖ Z k ‖2
F

, (46)

where Ẑ k is the tensor Z k estimated at the kth run, with Z k ∈ {H
(SR)
k ,H(RD)

k }. The SER
and NMSE are calculated by averaging the results over K = 5.104 Monte Carlo runs,
after truncating the 5% worse and 5% better values to eliminate the influence of ill-
convergence and outliers.

The transmission rate T is given by:

T =
∑L

l=1 Nl Rl − L
FP ∏L

l=1 Nl
log2(µ), (47)
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where ∑L
l=1 Nl Rl corresponds to the total number of transmitted symbols, L is the number

of symbols assumed to be a priori known for ambiguity suppression, and µ denotes the
number of constellation points. Note that increasing the number Nl of symbols in the
symbol matrix S(l) induces an increase of coding diversity and a lower transmission rate T,
while an increase of the number P of repetitions implies a decrease of T.

6.2. Impact of Design Parameters

In this section, we evaluate the SER performance of the proposed system under perfect
channel knowledge. In this case, we use the ZF-KronF receiver to estimate the transmitted
symbol matrices by means of Equation (41). The results presented in Figures 4–9 were
obtained for both hops, but due to lack of place, some SER results are shown only for the
relay. All parameters used for the simulations are provided in Table 6. Note that the default
values of these parameters are chosen equal to two. The corresponding transmission rates
are given in Table 7.

Figure 3 shows the impact on the SER for different numbers of symbols per data
stream: N1 = N2 ∈ {8, 12, 16}, where Srelay and Sdest denote the SER at the relay and the
destination, respectively. From these simulation results, it can be concluded that the SER
is improved when the numbers of symbols increase, which implies an increase of coding
diversity, since N = N1N2 is a dimension of the contracted form Y (SR)

c and Y (RD)
c of the

data tensors, which is not the case for R = R1R2. On the other hand, the transmission rate
decreases as shown in Table 7. In addition, note that the SER at the relay is better than
the one at the destination. This happens because with the DF protocol, the symbols are
estimated and decoded before they are retransmitted by the relay to the destination, which
induces a propagation error due to the decoding.

Table 6. Parameters for the simulations.

Figures Impact of Parameters

Figure 3 Number of symbols per data stream (MS, MR, MD) = (2, 4, 6); F = 2;P = 2;
R1 = R2 = 2; N1 = N2 ∈ {8, 12, 16}

Figure 4 Number of data streams (MS, MR, MD) = (2, 4, 6); F = 4;
P = 12; N1 = N2 = 4; R1 = R2 ∈ {4, 6, 8}

Figure 5 Different configurations for N1 and N2 (MS, MR, MD) = (2, 4, 6); P = F = 2;
R1 = R2 = 2; N1 = 4; N2 = 12

Figure 6 Different configurations for (F, P) (MS, MR, MD) = (2, 4, 6); N1 = N2 = 4; R1 = R2 = 2;
(F, P) ∈ {(2, 2), (4, 2), (8, 2), (2, 4), (2, 8)}

Figure 7 Number of symbol matrices L = 2: N1 = N2 = 4; R1 = R2 = 4; F = 8;
P = 12; (MS, MR, MD) = (2, 4, 6)
L = 3: N1 = N2 = 4;
N3 = 1; R1 = 4; R2 = 2; R3 = 9;
F = 8; P = 12; (MS, MR, MD) = (8, 8, 9)
L = 5: N1 = N2 = N3 = N4 = 2; N5 = 1;
R1 = R2 = R3 = R4 = 4; R5 = 3; F = 8; P = 12;
(MS, MR, MD) = (8, 8, 9)

Figure 8 Different antenna configurations N1 = N2 = 4; R1 = R2 = 2; F = 2; P = 4;
(MS, MR, MD) ∈ {(2, 4, 6), (4, 2, 6), (2, 2, 4), (2, 6, 6)}

Figure 9 Comparison of the TSTF-MSMKron and TSTF codings (MS, MR, MD) = (2, 4, 6); N1 = N2 = 2; R1 = 3;
R2 = 4; F = 2; P = 4; N = 2; R = 7

Figures 10–12 Comparison of the proposed semi-blind receivers (MS, MR, MD) = (2, 4, 4); N1 = N2 = 4;
R1 = R2 = 2; P = 18; F = 2
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Table 7. Transmission rate for different configurations.

Figures Parameters Transmission Rate (T)

Figure 3 N1 = N2 ∈ {8, 12, 16} T = 0.468; 0.319; 0.242

Figure 4 R1 = R2 ∈ {4, 6, 8} T = 0.156; 0.239; 0.322

Figure 5 N1 = 4; N2 = 12 T = 0.625

Figure 6 (F, P) ∈ {(2, 2), (4, 2), (8, 2), (2, 4), (2, 8)} T = 0.875; 0.437; 0.218; 0.437; 0.218

Figure 7 L ∈ {2, 3, 5} T = 0.0781

Figure 8 (MS, MR, MD) ∈
{(2, 4, 6), (4, 2, 6), (2, 2, 4), (2, 6, 6)} T = 0.437

Figure 9 Comparison of the TSTF-MSMKron and
TSTF codings T = 1.5; TS = 7

Figures 10–12 Comparison of the proposed semi-blind
receivers T = 0.094

Figure 3. Impact of numbers of symbols per data stream.

Figure 4. Impact of data stream numbers.
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Figure 5. Impact on the SER of individual symbol matrices.

Figure 6. Impact of different configurations of (F, P).

Figure 7. Impact of L on the SER.
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Figure 8. Impact of different numbers of antennas.

Figure 9. Comparison of the TSTF-MSMKron and TSTF codings.

Figure 10. SER comparison with THOSVD, Bi-ALS-KronF Equations (32) and (33) and ZF receivers
at the relay.
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Figure 11. SER comparison with THOSVD, Bi-ALS-KronF Equations (32) and (33) and ZF receivers
at the destination.

Figure 12. Channel NMSE comparison with THOSVD and Bi-ALS-KronF Equations (32) and (33) receivers.

Figures 4–9 present the SER obtained at the relay (Srelay). Figure 4 compares the SER
for three different data stream numbers: R1 = R2 ∈ {4, 6, 8}. From this figure, it can be
concluded that increasing R1 and R2 implies an increase of the number of symbols to be
estimated without increasing the number of data in the tensor Y (SR) for performing the
symbol estimation, thus inducing a degradation of the SER, while the transmission rate
increases (see Table 7).

In Figure 5, the simulation results compare the SERglobal with the individual SERs for
S(1) and S(2) when N1 = 4, N2 = 12 and R1 = R2 = 2. For this configuration, the Kronecker
product between S(1) and S(2) induces a greater diversity for S(1) than for S(2) due to the
fact that each symbol of S(1) is repeated 12R2 times while each symbol of S(2) is repeated
only 4R1 times. That implies an SER smaller for S(1) than for S(2).

Figure 6 presents the results considering different configurations for the numbers of
subcarriers (F) and time blocks (P). Note that a performance improvement is obtained
when F and/or P are/is increased due to an increase of frequency and/or time diversities.
On the other hand, the transmission rate decreases. We can also remark that for the same
value of the product FP = 8 or FP = 16, the diversity gain is the same, implying very close
SERs, which illustrates the symmetric role played by the frequency and time diversities in
the SER performance.
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In Figure 7, we compare the SER for different numbers of symbol matrices (L ∈ {2, 3, 5}).
The design parameters have been chosen so that the transmission rate is the same for the
three values of L. The MSMKron scheme with L = 5 provides the best SER performance
in comparison with L ∈ {2, 3}. These results corroborate the coding gain provided by the
Kronecker product of symbol matrices.

In Figure 8, the SERs are plotted for different configurations of antenna numbers
(MS, MR, MD) ∈ {(2, 4, 6), (2, 4, 2), (4, 2, 6)}. Comparing these configurations, we note that
the best SER is obtained when MD > MR > MS. For the configuration (4, 2, 6), the SER
is not good both at the relay and the destination, because the identifiability condition
(MS ≤ MR) at the relay is not satisfied. For the configuration (2, 4, 2), the SER at the relay
is similar to the one for the configuration (2, 4, 6) because the antenna numbers (MS, MR)
are the same for both configurations, but the SER at the destination is not good because the
identifiability condition (MR ≤ MD) at the destination is not satisfied for the configuration
(2, 4, 2), which is not the case of the configuration (2, 4, 6). With this last configuration, we
note that the SER at the relay is better than the one at the destination.

In Figure 9, the proposed TSTF-MSMKron coding is compared with the TSTF coding,
i.e., using a single symbol matrix S ∈ CN×R instead of a multiple Kronecker product of
symbol matrices. With the TSTF coding, the symbol matrix is estimated using Equation (31),
and the transmission rate is given by:

TS =
R

FP
log2(µ). (48)

For both codings, the number (14) of transmitted symbols is the same. See the design
parameters in Table 6.

As expected, from Figure 9, we conclude that the TSTF-MSMKron coding gives a
better SER than the TSTF coding thanks to a greater coding diversity brought by the
Kronecker product of symbol matrices. As a counterpart, the transmission rate with the
TSTF-MSMKron coding is smaller than the one with the TSTF coding. See Table 7.

6.3. Comparison of THOSVD and Bi-ALS-KronF Receivers

In the next experiments, we compare the SERs obtained with the proposed semi-
blind and ZF-KronF receivers. First, the results are presented in terms of SER at the
relay (Srelay-Figure 10) and the destination (Sdest.-Figure 11). Then, we compare the per-
formance of semi-blind receivers in terms of channel NMSE at each hop (Figure 12).
For these simulations, the design parameters are fixed with the following values: MS = 2,
MR = MD = 4, N1 = N2 = 4, R1 = R2 = 2, P = 18, and F = 2.

From Figures 10 and 11, we can conclude that the THOSVD receiver provides a better
SER performance than the Bi-ALS-KronF receiver. That is due to the closed form of the
THOSVD receiver allowing to jointly estimate the channel and symbol matrices, while the
Bi-ALS-KronF receiver is composed of two steps, one iterative and one closed form. On the
other hand, the THOSVD receiver is more constraining in terms of identifiability conditions
(MSR ≤ P) than the Bi-ALS-KronF receiver, inducing a reduction of the transmission rate,
as can be seen in Table 7. It can also be noted that the SER at the relay is better than the one
at destination due to the error propagation caused by decoding at the relay. As expected,
the ZF-KronF receiver provides the best SER due to an a priori knowledge of the channels.

In Figure 12, the channel NMSE results obtained at each hop are plotted. Note that
the THOSVD receiver gives better results than the Bi-ALS-KronF one. As for the SER, this
is because the THOSVD is a closed-form solution, while the Bi-ALS algorithm is iterative.
Moreover, the channel estimation in the first hop is slightly better than the one in the
second hop. This is due to error propagation in the re-transmission of symbol matrices
after decoding at the relay.

Note that considering non-coherent receivers [36–38] would imply avoiding the as-
sumption about the knowledge of the coding tensors G(S) and G(R) used at the source and
the relay, which would require a fully blind approach. Such a non-coherent assumption
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would destroy the essential uniqueness property of the estimated channels and symbols
(up to scaling ambiguities). More specifically, in the non-coherent case, the Tucker models
defined in Equations (15) and (26) would be affected by rotational ambiguities, which
means that the channel tensors and symbol matrices estimated at the relay and destination
nodes would be linked to the true ones via a transformation by a nonsingular matrix. It
should be mentioned that one possible way to ensure the successful decoding of transmit-
ted symbols in the non-coherent case, where such rotational ambiguities are present, is to
consider Grassmannian constellations for symbol matrices, as proposed in [39,40].

7. Conclusions

In this paper, we have proposed a new two-hop CDMA-OFDM MIMO system which
combines a tensor space–time–frequency (TSTF) coding with a multiple Kronecker product
of symbol matrices, leading to the so-called TSTF-MSMKron coding. This new coding
makes it possible to improve the gains in diversity and throughput. We have shown that
the tensors of signals received at the relay and destination nodes satisfy two generalized
Tucker models whose core tensors are the coding tensors.

Assuming these coding tensors are known, two semi-blind receivers have been de-
rived to jointly estimate the transmitted information symbols and the channels. One, called
the Bi-ALS-KronF receiver, is composed of two stages. In the first stage, the iterative ALS
algorithm is used to estimate the channel and the Kronecker product of symbol matrices,
while in the second stage, the KronF method is applied to separate the symbol matrices.
The other one, called THOSVD receiver, is a closed-form solution which allows simulta-
neously estimating the channel and the symbol matrices by means of SVD computations
as with the KronF method. Necessary conditions for system identifiability have been
established for each receiver, showing that the THOSVD receiver is more constraining than
the Bi-ALS-KronF one for the choice of the number of time blocks and consequently from
the data rate point of view.

It is worth mentioning that the proposed two-hop system can be easily extended to
the multi-hop case owing to the use of the DF protocol at the relay, since the tensor models
for the signals received at the relays and destination have the same structure (generalized
Tucker models), with the correspondences (23) and (24) established between the first and
second hops. These correspondences can be easily generalized to more than two hops if
the same coding scheme is used at each relay.

Extensive Monte Carlo simulations have allowed illustrating the impact of all the
design parameters on the SER performance using the ZF receiver. In particular, the diver-
sity gain brought by each parameter of the TSTF-MSMKron coding has been analyzed.
The performances of the proposed semi-blind receivers have been compared in terms of
SER and channel NMSE. As expected, the THOSVD closed-form receiver outperforms the
iterative Bi-Als-KronF receiver. Moreover, a comparison with the standard TSTF coding
has corroborated the SER improvement brought by the MSMKron coding, which allows
increasing the diversity gain.

Note that we have numerically evaluated the SER performance under different
schemes, assuming 16-QAM constellation for all the symbol matrices involved in our
MSMKron coding scheme. At this point, we do not have a theoretical SER performance
evaluation. Deriving an analytical Cramer–Rao bound (CRB) for the estimated channels
and symbols is challenging, and this constitutes an important perspective for this work.

Among some other perspectives of this work, we can mention an extension of the
proposed relaying system to the multi-hop case using the amplify-and-forward (AF) pro-
tocol and taking resource allocation tensors into account. Such considerations will lead
to new tensor models and therefore new semi-blind receivers. Other extensions concern
the development of relaying systems with TSTF-MSMKron coding for double-directional
dual-polarized MIMO systems and intelligent reflecting surfaces (IRS)-assisted systems.
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Abbreviations
The following abbreviations are used in this manuscript:

4G fourth-generation
5G fifth-generation
6G sixth-generation
AF amplify-and-forward
ALS alternating least squares
Bi-ALS bi-alternating least squares
CDMA code division multiplexing access
CSI channel state information
DF decode-forward
DFT discrete Fourier transform
DKRF double KRF
HONTD high-order nested Tucker decomposition
IoT internet of things
KRF Khatri–Rao factorization
KRST Khatri–Rao space-time
KRSTF Khatri–Rao space-time-frequency
KronF Kronecker factorization
LM Levenbergh–Marquardt
LS least squares
LSKP LS estimation of Kronecker products
MIMO multiple input multiple output
MKRF multiple Khatri–Rao factorization
MKRSM multiple Khatri–Rao product of symbol matrices
MKRST multiple Khatri–Rao space–time
MKronST multiple Kronecker space–time
MSMKron multiple symbol matrices Kronecker product
NMSE normalized mean square error
OFDM orthogonal frequency division multiplexing
PARAFAC parallel factors analysis
QAM quadrature amplitude modulation
PSK phase-shift keying
SER symbol error rate
SNR signal-to-noise ratio
ST space–time
SVD signal value decomposition
TD Tucker decomposition
THOSVD truncated higher-order singular value decomposition
TSTF tensor space–time frequency
ZF zero-forcing



Sensors 2023, 23, 5963 24 of 26

Appendix A. Kronecker Factorization (KronF) Algorithm

In this section, the KronF algorithm is presented for estimating the matrix factors of a
multiple Kronecker product C = A(1) ⊗ . . .⊗A(N) ∈ CI1 ...IN×R1 ...RN , with A(n) ∈ CIn×Rn ,
for n ∈ [1, N], by minimizing the LS cost function:

min
A(n),n∈[1,N]

‖ C−A(1) ⊗ . . .⊗A(N) ‖2
F, (A1)

Following the idea introduced in [41] for a Kronecker product of two matrices, the prob-
lem is solved by rewriting the cost function (A1) in terms of approximation of a rank-one
tensor built as the outer product of vectorized forms of the matrix factors, as:

min
a(n),n∈[1,N]

‖ C − a(1) ◦ . . . ◦ a(N) ‖2
F, (A2)

where a(n) = vec(A(n)) ∈ CRn In , and C ∈ CR1 I1×...×RN IN is the rank-one tensor obtained by
reshaping the multiple Kronecker product:

C = reshape(C, [R1 I1, . . . , RN IN ]). (A3)

Each vector a(n) is estimated using the THOSVD algorithm, and the matrix factor

estimate Â(n) is deduced using the unvec operator [29,32,42], with a scalar ambiguity which
can be eliminated assuming the knowledge of one element of A(n), e.g., a(n)11 = 1, which
leads to the following corrected estimate:

ˆ̂A(n) = (â(n)11 )−1Â(n). (A4)
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